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Molecular dynamic (MD) simulations are used to probe the ability of Navier–Stokes-
order theories to predict each of the constitutive quantities – heat flux, stress tensor and
dissipation rate – associated with granular materials. The system under investigation
is bounded by two opposite walls of set granular temperature and is characterized
by zero mean flow. The comparisons between MD and theory provide evidence of
higher-order effects in each of the constitutive quantities. Furthermore, the size of
these effects is roughly one order of magnitude greater, on a percentage basis, for heat
flux than it is for stress or dissipation rate. For the case of heat flux, these effects are
attributed to super-Burnett-order contributions (third order in gradients) or greater,
since Burnett-order contributions to the heat flux do not exist. Finally, for the system
considered, these higher-order contributions to the heat flux outweigh the first-order
contribution arising from a gradient in concentration (i.e. the Dufour effect)

1. Introduction
Rapid flows of solid particulates occur in a wide array of granular and multiphase

systems. Examples include the motion of particulates in planetary rings, the top
layer of pharmaceutical powders mixing in a tumbler, and high-velocity gas-fluidized
beds as used in the gasification of coal and biomass, the synthesis of titania, etc.
Continuum models based on an analogy with the kinetic theory of gases have been
used widely over the last several decades to describe such flows (see review articles
by Campbell 1990; Sundaresan 2000; Goldhirsch 2003; Curtis & van Wachem 2004;
Goldhirsch, Noskowicz & Bar-Lev 2004; Wassgren & Curtis 2006). The accuracy
of kinetic-theory-based models for granular flows has been tested using two general
approaches. In the first approach, the governing equations are applied to a specific
system along with appropriate initial and/or boundary conditions; the profiles of the
predicted hydrodynamic profiles are then compared to those obtained via experiments
or molecular dynamics (MD) simulations. In the second approach, fluxes and/or
transport coefficients are extracted from MD simulations and compared to those
predicted from kinetic-theory-based models. The latter approach, which is the focus
of the current effort, allows for a more direct comparison since errors do not propagate
from one quantity/expression (hydrodynamic variables, boundary conditions, etc.) to
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another (stress, heat flux, etc.). Nonetheless, several subtleties arise which make such
a comparison non-trivial.

The main challenge associated with the extraction of transport coefficients from
MD simulations or experiments is the need to know the form of the flux law a
priori. A specific example is the first (Navier–Stokes) order approximation of the heat
flux q, which takes the form of Fourier’s law (q = −k∇T ) according to some granular
theories (Jenkins 1998), and includes the Dufour contribution (q = −k∇T − µ∇n) in
others (Brey et al. 1998; Sela & Goldhirsch 1998; Garzó & Dufty; 1999), where
k is the thermal conductivity, T is the granular temperature, µ is the Dufour
coefficient, and n is the number density of particles. Given that fluxes (heat flux,
momentum flux, etc.) can be measured in MD simulations, but not necessarily (or
easily) the separate contributions to these fluxes or their functional dependence on the
hydrodynamic fields (n, T ), the calculated value of the transport coefficient depends
on the assumed form of the flux law. A further complication is encountered when the
Dufour contribution is included; namely, the number of unknown variables in the
flux equation is two (k and µ). Various approaches have been taken to address these
issues. Shattuck et al. (1999) assume Fourier’s law holds in order to extract k from
their MD simulations, which is then compared to kinetic-theory-based predictions.
Herbst, Müller & Zippelius (2005) instead assume that both k and µ are constant
over a domain in which both n and T vary, which thereby allows them to perform
a best-fit of both the transport coefficients over various sets of simulation data. A
more rigorous approach is taken by Soto, Mareschal & Risso (1999), who extract µ

from locations in the domain where ∇T = 0 and ∇n �= 0; at such points, the flux law
reduces to q = −µ∇n and thus only one unknown (µ) remains. Unfortunately, our
own simulations (unpublished) indicate that such an approach is not robust for the
system they examined since the location at which ∇T = 0 often, though not always,
coincides with the location at which ∇n = 0, which thereby precludes the isolated
extraction of µ.

Furthermore, previous studies have indicated that the form of the heat flux law
used to obtain kinetic-theory-based predictions of various systems impacts even
the qualitative nature of the resulting profiles. More specifically, when solving the
boundary-value problem for a vibro-fluidized bed, the use of Fourier’s law results in a
monotonic decrease of temperature with an increase in bed height (Martin, Huntley &
Wildman 2006). On the other hand, when the flux law which includes the ∇n driving
force is used, a local minimum in granular temperature is observed at low bed heights
(Brey, Ruiz-Montero & Moreno 2001; Martin, et al. 2006). Unfortunately, existing
experimental data cannot be used to distinguish the correct behaviour because of the
presence of the Knudsen layer at the open end of the system (Martin et al. 2006).

In an attempt to build on these previous efforts and gain a better understanding
of the heat flux law and in particular the role of the Dufour contribution, MD
simulations were performed for a simple bounded conduction system. In particular,
the system under consideration is characterized by zero mean flow and opposing walls
of two specified temperatures, which is a natural choice for investigations on heat
flux. The constitutive quantities under examination include the heat flux, the stress
tensor, and the dissipation rate of granular energy. A comparison of MD values and
theoretical predictions of these quantities reveal that higher-order effects (i.e. beyond
first-order in spatial gradients) play an important role. For the specific case of heat
flux, these effects are at least super-Burnett-order (third-order in spatial gradients),
and are significantly larger in magnitude than corrections provided by the Dufour
contribution.
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Figure 1. Schematic of bounded conduction system.

2. Molecular dynamics simulations: computational algorithm
2.1. Bounded conduction

Three-dimensional molecular dynamics (MD) simulations of identical spheres are
carried out. The particles are treated as inelastic frictionless spheres and particle
collisions are assumed to be binary and instantaneous. The system is bounded on
the left and right by motionless walls of constant, but not necessarily equal, granular
temperature (see figure 1). The remaining four sides (top, bottom, front and back)
are standard periodic boundaries. Since no body forces are present, the system is
characterized by zero mean flow. The present simulation will be briefly discussed; a
more detailed description is contained elsewhere (Dahl & Hrenya 2004; Galvin et al.
2005, 2007).

The simulation domain is bounded on the left- and right-hand side by walls
of constant set temperature (Tset) using a method for thermal walls presented by
Cercignani (1987) and Pöschel & Schwager (2005). The post-collisional components
of particle velocity parallel to the wall (i.e. in the y and z directions) are determined
following the Box–Muller method for generating two tangential Gaussian distributions
(Press et al. 1992):

cpost,y =

√
−2Tset

mi

ln(z1) cos (2πz2), (1)

cpost,z =

√
−2Tset

mi

ln(z3) sin (2πz4), (2)

where z1–z4 are random numbers uniformly distributed in the interval [0, 1]. The
post-collisional component of particle velocity normal to the wall (in the x direction)
is given by

cpost,x =

√
−2Tset

mi

ln(z5), (3)

where z5 is a random number again uniformly distributed in the interval [0, 1].
The sign of this component is determined by reversing the sign (+ or −) of the
pre-collisional component of particle velocity normal to the wall. As previously
mentioned, the four remaining boundaries are standard periodic boundaries. Thus, a
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particle crossing through one of these boundaries is returned through the opposing
boundary with the same velocity and relative position.

The simulation proceeds in time based on a hard-particle/overlap algorithm
(Hopkins & Louge 1991). For further details on particle initialization and the particle
advancement algorithm, see Dahl & Hrenya (2004).

The simulation input parameters include the following: the length of the simulation
domain in the x, y and z directions (Lx , Ly and Lz), the particle diameter (d),the
particle mass (m), the average solids volume fraction in the (entire) system (ν̄), the
coefficient of restitution (e), and the set values of the wall temperature located at
x/Lx = 0 (TC) and x/Lx = 1 (TH ). The dimensionless parameters characterizing the
system are ν̄, e, TH/TC , Lx/d , Ly/Lx and Lz/Lx . In the present effort, Lx/d is set at a
value of 35 to ensure that each simulation is described by a global reciprocal Knudsen
number greater than 5 (i.e. 1/Kn > 5), where the ‘global’ Knudsen number is defined
as Kn = λ̄/Lxand λ̄ = d/(6ν̄) is the spatially averaged mean free path. Accordingly,
the total number of particles (N) in a given simulation will range from 4000 to 12000
depending on the values of the other dimensionless quantities (ν̄, Ly/Lx , Lz/Lx). In
the present simulations the periodic domain lengths are set equal (Ly = Lz) with a
value of Ly/Lx = Lz/Lx = 1; these values of the periodic domain lengths were found
to be large enough that the collected data are not sensitive to further increases in
these quantities. Consequently, the simulation domain is cubic (Lx = Ly =Lz) and the
characteristic dimension is here in after referred to as L. The remaining parameter
space under investigation includes the temperature ratio (TH/TC) with set values of
1, 2 and 15, ν̄ = 0.025 − 0.15 (Kn = 1.9 × 10−1 − 3.2 × 10−2) and e = 0.8 – 1. For
convenience, the dimensional quantities m and Lx are set equal to 1.

The outputs from the simulation include lateral profiles of solids volume fraction
(ν), granular temperature (T ), heat flux (q), stress tensor (σ ), and the dissipation rate
of granular energy (γ ). The granular temperature is defined as T = 1/3〈C2〉 where C
is the fluctuating velocity. Note that several output quantities (T , q, σ , γ ) depend on
the fluctuating velocity C , which is defined relative to a local mass-average velocity.
Since a zero local velocity is assumed in all calculations (as described in § 4, this
assumption of no collective motion, or no clustering, does not impact on the results),
the instantaneous particle velocity (c) is equal to the fluctuating particle velocity and
so the two may be used interchangeably. For further details on data collection, the
reader is referred to Dahl & Hrenya (2004) and Galvin, Hrenya & Wildman (2007).

To determine the spatial variation in the output quantities the domain is divided
into thin rectangular boxes aligned parallel to the walls of set temperature. The
current simulations include 30 data collection strips so that the width of each data
collection strip (�x) is slightly wider than a particle diameter. The collected data do
not change meaningfully with further resolution in the strip width.

For each strip, the hydrodynamic variables (ν, T ) and the constitutive quantities
(q, σ , γ ) are reported. Only the portion of the particle volume that resides within a
given data collection strip is included in determining the solids volume fraction of
that strip. The granular temperature of each strip is determined by including only the
granular temperature of particles whose centres reside within the data collection strip
at the instant of measurement. Note that if both quantities are collected according
to the former method (distribution of quantity based on volume fraction of particle
residing in a given strip), the results are essentially identical to those presented
below.

The total heat flux (q) is comprised of two parts: a kinetic component (qk) and a
collisional component (qc). Following the methods used by Herbst et al. (2005), the
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kinetic contribution of the heat flux is determined using

qk,a,strip =
1

Vstrip

nstrip∑
i=1

1
2
mC2

stripCa,strip. (4)

In this equation, Ca,strip is the fluctuating velocity of particle i in the a direction (where
a can be x, y or z) in the specified strip, C2

strip = Cstrip · Cstrip, Vstrip is the volume of
the strip (Vstrip = LzLy�x) and nstrip is the number of particles whose centres reside
within the data collection strip. If a different, reasonable criterion is used, such as a
distribution of flux according to volume fraction of particles residing in a strip, the
resulting stress profile is found to be essentially identical. (This finding is also true for
all remaining constitutive quantities discussed below, including both kinetic and colli-
sional components.) Similarly, the collisional component of the heat flux is found by

qc,a,strip =
1

2Vstrip�t

∑
collstrip

(�E1 − �E2)Dka. (5)

In this equation, �t is the elapsed time since data collection was initiated, D is
the distance between the particle centres, ka is the a component of the unit vector
pointing from the centre of particle 1 toward the centre of particle 2 (a = x, y, or z),
�E1 is the change in energy of particle 1 owing to a collision with particle 2, and
�E2 is the change in energy of particle 2 owing to a collision with particle 1. For a
given particle, the quantity �E is defined as

�E = 1
2
m

(
C2

post − C2
pre

)
, (6)

where the mass and fluctuation velocity are those quantities associated with the
given particle. The collisional heat flux (equation (5)) is found by summing only
the heat flux of particles whose centres reside within the data collection strip during
the collision (summation over coll strip). In the event that the centres of the two
colliding particles lie in different strips, the collisional heat flux is divided equally
between the adjacent data collection strips in which the particle centres reside.

The stress tensor also consists of a kinetic and a collisional contribution. The kinetic
stress components (σ k,ab) are calculated based on the equations used by Campbell &
Gong (1986) applied to each collection strip:

σk,ab,strip =
1

Vstrip

nstrip∑
i=1

mCa,stripCb,strip. (7)

In this equation, Cb,strip is the fluctuating velocity of particle i in that strip in the b

direction (where b can be x, y or z). The collisional stress components (also based on
equations of Campbell & Gong 1986) are calculated as

σc,ab,strip =
1

Vstrip�t

∑
collstrip

JaDkb, (8)

J = m1(C1,pre − C1,post), (9)

where Ja is the a component of momentum impulse (J) applied during the collision,
kb is the b component of the unit vector pointing from the centre of particle 1
toward the centre of particle 2 (a,b = x, y, or z), and D is the distance between the
particles centres. In the impulse calculation, C1,post is the post-collisional (random)
particle velocity of particle 1, C1,pre is the pre-collisional (random) particle velocity
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of particle 1, and m1 is the mass of particle 1. In this system, D = d and m1 = m.
Similar to the collisional heat flux, the collisional stress within each data collection
strip is found by including only the collisional stress of colliding particles whose
centres reside within the data collection strip during the collision. In the event that
the centres of the two colliding particles lie in different strips, the collisional stress is
then divided equally between the adjacent data collection strips in which the particle
centres reside.

The granular energy dissipation rate per unit volume (γ ) is a measure of the change
of energy resulting from a binary collision. Following Herbst et al. (2005), the energy
dissipation rate is defined by

γstrip =
1

Vstrip�t

∑
collstrip

(�E1 + �E2), (10)

where the terms are the same as those defined previously.
Unless otherwise specified, the data collection phase of each simulation comprises

50 000 collisions per particle during which 1 000 000 evenly spaced instantaneous
measurements of solids volume fraction, granular temperature and the kinetic
components of the heat flux and stress tensor are made. The collisional components
of the constitutive quantities are evaluated as a summation over all collisions during
the data collection portion of the simulation. The average of these measurements is
calculated and reported at the end of the simulation. Measurements corresponding to
the strips adjacent to the bounding walls are not reported owing to volume exclusion
effects caused by the solid boundary. For details, see Galvin et al. (2007).

2.2. Homogeneous cooling system

As discussed in § 4, a number of simulations were also run for a homogeneous cooling
system (HCS), in which the only modification to the bounded system described above
is that all six faces of the cubic domain are periodic. Thus, the system is homogenous
in the spatial domain. (As detailed in § 4, all data obtained from MD simulations was
collected from a non-clustered state.) Furthermore, since no energy source exists, the
system ‘cools’ with time (T decreases) for all e < 1. It is well known, and confirmed by
the current MD simulations, that dT/dt (which equals −γ /n based on the governing
equation for HCS) also varies with time, which complicates the collection of γ .
Specifically, using (10) to find γ presents several challenges: (i) at small �t , γ is noisy
(T decreases monotonically with t , but its gradient is noisy) and (ii) at higher �t ,
γ is found to depend on the size of the averaging region. These obstacles can be
overcome, however, by considering the behaviour predicted by kinetic-theory-based
models, namely dT/dt ∝ T 3/2, which can be integrated to show that ln(T ) vs. ln(t) is
linear with a slope of m = −2, as is consistent with Haff’s law (Haff 1983). Following
from this relationship, dln(T )/dln(t) = m, which can be rearranged to give

dT

dt
= m

T

t
. (11)

In this manner, dT /dt (and thus γ ) can be determined using the value of
hydrodynamic variable T from a single time point t , rather than having to evaluate the
derivative of T at that time point. The MD simulations confirm that ln(T ) vs. ln(t) be-
comes linear after roughly 15 collisions per particle, with a slope of approximately −2.

A further simplification can be made by considering the predicted dependency of γ

on T . In particular, kinetic-theory-based models indicate that γ ∝T 3/2. Thus, although
dT /dt = −γ /n varies with time, (dT /dt)/T 3/2 = −γ /nT 3/2) = γ ∗/n remains constant
(since n and all other properties impacting γ are constant in the HCS), where γ ∗
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(=γ /T 3/2) is the dissipation rate divided by its known temperature dependency. This
(long-time) constant behaviour is again confirmed by MD simulations. (In other
words, the MD values of γ ∗ at short times depend on initial particle velocities
(temperature) and/or positions, though the longer-time values are constant and
independent of initial conditions.) Data are collected using a series of averaging
periods with a duration of 25 collisions per particle, during which 1000 measurements
of T and t are recorded. For each period, the best-fit slope of ln(T ) vs. ln(t) is
determined. If the slope is within 5% of the expected value of −2, the corresponding
value of dT /dt is determined for each of the 1000 time points using (11), and then
non-dimensionalized via division by T 3/2. Based on the 1000 values of dT /dt , an
average value of γ ∗ is then calculated for the given period. A minimum of three
periods for the collection of γ ∗ is used. Once the cumulative average of γ ∗ over
these periods differs by less than 1%, the simulation is stopped and the cumulative
average of γ ∗ is recorded. All simulations were run with 100 particles in an effort to
preclude the onset of clustering, as detailed in § 4. The only exception made to this
collection methodology is for ν̄ = 0.5 and e = 0.95, in which the collection period is
defined as 100 collisions per particle since T is noisier at low ν̄ and high e.

3. Theoretical predictions
In the following section, the constitutive quantities obtained from MD simulations

are compared to predictions obtained from continuum theories for rapid granular
flows. Specifically, the kinetic-theory-based predictions of Jenkins (1998), Sela &
Goldhirsch (1998) and Garzó & Dufty (1999) are considered. In this effort, the
theoretical predictions for the constitutive quantities (q, γ and σ ) are obtained using
the MD simulation profiles in ν and T as inputs to the theory. As a result, possible
errors in the predictions of the hydrodynamic variables (ν and T , as obtained from
solution of the boundary-value problem) are prevented from propagating to the
predictions of the constitutive quantities.

All of the theories target uniform inelastic frictionless spheres engaging in binary
collisions, which is identical to the treatment used in the MD simulations. The
theories of Jenkins (1998) and Garzó and Dufty (1999) are both of Navier–Stokes-
order, though a key difference exists in the derivation process. In particular, the
theory of Jenkins (1998) is based on a nearly elastic assumption while the theory of
Garzó & Dufty (1999) is based on an expansion about low Knudsen numbers, in
which no restriction on the level of dissipation is made. Consequently, the resulting
constitutive relations will have different dependencies on the hydrodynamic variables.
These expressions for the constitutive quantities, as applied to the bounded conduction
system, are summarized in table 1.

Unlike the theories of Jenkins (1998) and Garzó & Dufty (1999), the work of Sela
& Goldhirsch (1998) is of Burnett order, though it is restricted to both the dilute
and nearly elastic limits. The Burnett-order corrections (second-order in gradients)
derived by Sela & Goldhirsch (1998) are contained in table 2 for the case of bounded
conduction. The superscript B refers to terms of Burnett order. It is worth noting
that Brey et al. (1998) have also derived Burnett-order corrections to the dissipation
rate for dilute systems, without any restriction on the level of inelasticity. Specifically,
explicit coefficients for ∇2T and ∇2n are given, though explicit expressions for the
coefficients of (∇T )2, (∇n)2 and ∇T · ∇n are not included. Because all five of these
Burnett-order gradients are non-zero in the bounded conduction problem examined
here, a direct comparison with this theory is not carried out.
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Jenkins (1998)
Heat flux

qx = −
{

75

64

m

d2
√

π

√
T

[
1

g0

+
24

5
ν +

144

25

(
1 +

32

9π

)
ν2g0

]}
dT

dx

Dissipation rate of granular energy

γ =
24νg0

d
√

π
(1 − e) mnT 3/2

Pressure

P =
6ν

πd3
mT [1 + 4νg0]

Garzó & Dufty (1999)
Heat flux

qx = −
{

75

64

m

d2
√

π

√
T

[
k∗

k

(
1 +

6

5
νg0 (1 + e)

)
+

256ν2

25π
g0 (1 + e)

(
1 +

7

32
c∗

)]}
dT

dx

−
{

25

128

md
√

πT 3/2

ν

[
µ∗

k

(
1 +

6

5
νg0 (1 + e)

)]}
dn

dx
Dissipation rate of granular energy

γ =
12νg0

d
√

π

(
1 − e2

) (
1 +

3

32
c∗

)
mnT 3/2

Pressure

P =
6ν

πd3
mT [1 + 2ν (1 + e) g0]

Additional quantities

k∗
k =

2

3

(
ν∗

k − 2ς (0)∗)−1
{

1 +
1

2

(
1 + p∗) c∗ +

6

10
νg0 (1 + e)2

[
2e − 1 +

(
1

2
(1 + e) − 5

3 (1 + e)

)
c∗

]}

ν∗
k =

1

3
(1 + e) g0

[
1 +

33

16
(1 − e) +

19 − 3e

1024
c∗

]

ς (0)∗ =
5

12
g0

(
1 − e2

) (
1 +

3

32
c∗

)

p∗ = 1 + 2ν (1 + e) g0

c∗ = 32 (1 − e)
(
1 − 2e2

) [
81 − 17e + 30e2 (1 − e)

]−1

µ∗
k = 2

(
2ν∗

k − 3ς (0)∗)−1

{(
1 + n

∂ ln g0

∂n

)
ς (0)∗k∗

k +
p∗

3

(
1 + n

∂ ln p∗

∂n

)
c∗

− 12

15
νg0

(
1 +

1

2
n

∂ ln g0

∂n

)
(1 + e)

[
e (1 − e) +

1

4

(
4

3
+ e (1 − e)

)
c∗

]}

Carnahan & Starling (1969)
Radial distribution function

g0 =
2 − ν

2 (1 − ν)3

Table 1. Navier–Stokes order constitutive relations for bounded conduction system.

4. Results and discussion
Molecular-dynamics (MD) simulations of the bounded conduction system (figure 1)

were carried out over a range of parameters, ν̄ = 0.025 − 0.15, e = 0.8 − 0.99, and
TH/TC = 1 − 14. The results presented in this section are representative of those
obtained throughout the parameter space. Typical profiles of the mean flow fields are
given in figure 2 for a system with ν̄ = 0.05, e = 0.8 and TH/TC =1. Because of the
dissipative (inelastic) nature of particle-particle collisions, the granular temperature
is at a minimum at the domain centre (figure 2b), with the left-hand and right-hand
boundaries serving as a source of granular energy. As expected from the governing



Higher-order effects in thermally driven rapid granular flows 437

Sela & Goldhirsch (1998)
Heat flux

qB
x

= 0
Dissipation rate of granular energy

γ B = 0.2444
ε�

θ 1/2

(
dθ

dx

)2

− 0.0834
ε�

nθ1/2

(
d (nθ )

dx

) (
dθ

dx

)
+ 0.0692ε�θ1/2

(
d2θ

dx2

)

Stress tensor

σB
xx = −0.6422n�2

[
1

3

{
1

n

(
d2 (nθ )

dx2

)
− 1

n2

(
dn

dx

)(
d (nθ )

dx

)}]
+ 0.2552n�2

(
d2θ

dx2

)

+ 0.0719
�2

θ

(
d (nθ )

dx

)(
dθ

dx

)
+ 0.0231

n�2

θ

(
dθ

dx

)2

σB
yy = σB

zz = 0

Additional quantities

θ = 3T

ε = 1 − e2

� =
1

πnd2

Table 2. Burnett–order corrections to constitutive relations for bounded conduction system.
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Figure 2. MD profiles of flow field variables (a) solids volume fraction, (b) non-dimensional
granular temperature. MD simulations for total temperature (cross), y-component (squares),
x-component (circles) and z-component (diamonds). Reciprocal local Knudsen numbers of
2.5 evaluated from the cold, left (solid vertical line) and hot, right (dash-dot vertical line).
Relevant parameters are e = 0.8, ν̄ = 0.05, TH /TC = 1, L/d = 35.

equations for this system (Galvin et al. 2007), the solids concentration and granular
energy are inversely related, thereby leading to a maximum value of packing fraction
at the centre of the domain (figure 2a).

In figure 3, MD profiles for each of the constitutive quantities are displayed for
the same set of system parameters considered in figure 2. As evident from figure 3a,
granular energy is transported from the walls to the centre of the domain, i.e. the heat
flux qx is positive on the left-hand side of the domain and negative on the right-hand
side. Furthermore, the heat flux is greatest in magnitude near the walls and zero at
the centre of the domain since the flow-field gradients are zero at x/L = 0.5. Profiles
of the normal stress components are contained in figure 3(b), in which σ xx is seen to
be constant across the domain while σ yy = σ zz are seen to display a minimum in the
centre. As pointed out by Herbst et al. (2004), this non-constant behaviour of σ yy and



438 C. M. Hrenya, J. E. Galvin and R. D. Wildman

0 0.2 0.4 0.6 0.8 1.0
–400

–200

0

200

400

x/Lx

qx

(a)

(c)

(b)

0 0.2 0.4 0.6 0.8 1.0
480

500

520

540

560

x/Lx

σyy

σzz

0 0.2 0.4 0.6 0.8 1.0

650

700

750

800

850

x/Lx

σxx

σ

γ

Figure 3. MD profiles of constitutive quantities (a) heat flux, (b) stress components, and (c)
dissipation rate. MD simulations for xx -component of stress (circles), yy-component (squares)
and zz -component (diamonds). Vertical lines are as in figure 2. Relevant parameters are
e = 0.8, ν = 0.05, TH /TC = 1, L/d = 35.

σ zz is not contrary to the behaviour dictated by the Navier–Stokes-order equations.
Namely, the only non-vanishing component of the momentum balance is the x-
component, which reduces to dσ xx/dx = 0 or σ xx = constant. Although the y- and
z-components contain the terms ∂σ yy/∂y and ∂σ zz /∂z, respectively, all ∂/∂y and ∂/∂z

terms vanish in the current system owing to the periodic boundaries, so σyy and σ zz are
not necessarily restricted to constant values. Figure 3(c) demonstrates the behaviour of
the dissipation rate, which displays its minimum values at the boundaries and a small
local minimum in the middle of the domain. This minimum becomes more prominent
at higher values of ν̄ and disappears for lower values of ν̄ (figures not shown).

To ensure that the results obtained from simulations are not subject to errors
associated with insufficient averaging times, etc., high-accuracy simulations were
performed. In particular, the MD values for the constitutive quantities were verified
via a check of the governing equations, namely dσxx/dx = 0 (x-component of
the momentum balance) and 0 = −dqx/dx − γ (granular energy balance). The
corresponding percentage errors obtained from MD, as displayed in figures 4(a)
and 4(b), respectively, are calculated according to(

% error in x-component
of momentum balance

)
=

σxx,MD − σ̄xx,MD

σ̄xx,MD

× 100, (12)
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(
% error in granular
energy balance

)
=

−dqx,MD

dx
− γMD

γMD

× 100, (13)

where the overbar refers to the average value obtained across the simulation domain
and the MD-subscript indicates values obtained from the MD simulations. As
demonstrated by figure 4, the maximum error observed for either balance equation is
less than 0.5%.

For the results presented below, two precautions are taken to make certain that the
comparison between theory and simulations is as fair as possible. First, as mentioned
above, MD values for the hydrodynamic variables (ν and T ) are used as inputs to the
theoretical predictions for the constitutive quantities (equations (4), (5), (7), (8) and
(10)) as opposed to solving the corresponding BVP (boundary value problem). For
the latter approach, any errors in the predicted profiles for ν and T would propagate
to the theoretical evaluation of constitutive quantities. This situation is avoided
by using the MD profiles as inputs. Secondly, attention is focused on the bulk
interior, since comparisons are being made with continuum theories that incorporate
particle–particle, but not particle–wall, collisions. More specifically, comparisons in
the near-wall region are ignored since the transport coefficients in this Knudsen layer
are impacted by the detailed nature of the wall (through particle–wall collisions)
whereas the bulk interior is dictated by particle–particle collisions. The thickness of
the Knudsen layer is thus expected to be of the order of a mean free path, since
after travelling this distance from the wall, particles are likely to have engaged in
a particle–particle collision. The identification and impact of the Knudsen layer for
the system under consideration was explored in detail by Galvin et al. (2007). An
example of these findings is given in figure 5, which include MD profiles of the
granular temperature gradient (figure 5a) and heat flux (figure 5b). In molecular
systems, a ‘slip’ or ‘jump’ in temperature characterizes the transition from the bulk
interior to the Knudsen layer (Ferziger & Kaper 1972; Mackowski, Papadopoulos &
Rosner 1999). In the granular systems considered here, such a jump may be evident
from an abrupt change in the slope of the ∇T profile (x/Lx ∼ 0.7 in figure 5a) but
may also be too subtle for easy detection (x/Lx ∼ 0.2 in figure 5a). A more robust
method for identifying the width of the Knudsen layer is via an examination of the
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predictions. MD simulations (circles); Jenkins (1998) predictions (solid line); Garzó & Dufty
(1999) predictions (thick dotted line). Vertical lines are as in figure 2. Relevant parameters are
e = 0.99, ν̄ = 0.05, TH /TC = 2, L/d = 35.

error between the theoretical heat flux with that obtained from MD (figure 5b). In the
event that heat flux data are not available (as is true for experiments), an alternative
method for identifying the Knudsen layer is via a reciprocal (local) Knudsen number,

1

Knwall

=
�wall

λwall

=

(
�

λ

)
wall

, (14)

where �wall is the distance between a given wall and a point interior to the domain
(e.g. the vertical line) and λwall is the mean free path defined in terms of the average
solids fraction (ν̄wall) between the wall and the distance �wall (λwall = d/(6ν̄wall)
for three-dimensional systems). For the systems under consideration here, a value
of (�/λwall) = 2.5 was found to coincide with the bulk-to-Knudsen-layer transition
predicted by the heat flux measurements; see figure 5(b) where these values for
the left- and right-hand walls are demarcated by the solid and dashed vertical lines,
respectively. Similar lines are contained in figures 2 to 6 and 8 to 10. For the remainder
of this section, attention will be paid to the bulk interior (the region between the two
vertical lines) in order to make the fairest possible comparison between the existing
continuum theories and the MD data.

In figure 6, a comparison is made between the MD values for the dissipation rate (γ )
and the theoretical predictions of Jenkins (1998) and Garzó & Dufty (1999). (Another
set of predictions is also included, as will be discussed below.) The comparison is
plotted as a percentage error, namely 100 × (theory − MD)/MD, for the case of
ν̄ = 0.05, TH/TC = 1, and for two restitution coefficients, namely e = 0.99 (figure 6a)
and e = 0.8 (figure 6b). Excellent agreement is observed at e = 0.99, with less than
1% error for both theories. At e = 0.8, the magnitude of the error in the bulk interior
increases for both theories up to 5–10%. Furthermore, the maximum error (−10%)
in the Garzó & Dufty (1999) theory over the bulk interior at e = 0.8 is greater than
that (5%) of Jenkins (1998). The increase in error level with increasing dissipation
is expected from the Jenkins (1998) theory since it is derived using a nearly elastic
assumption. However, these trends are surprising for the Garzó & Dufty (1999) theory
since it is derived without any restrictions on dissipation levels.



Higher-order effects in thermally driven rapid granular flows 441

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

x/Lx

0 0.2 0.4 0.6 0.8 1.0
x/Lx

(a) (b)

–15

–10

–5

0

5

10

15
γ,

 e
rr

or
 (

%
) 

w
it

h 
M

D

Figure 6. The percentage error in dissipation rate between MD simulations and theoretical
predictions for two different inelasticities (a) e = 0.99 and (b) e = 0.8. Jenkins (1998) predictions
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To gain further insight on the unexpected behaviour of the Garzó & Dufty (1999)
theory at lower restitution coefficients, the homogeneous cooling system (HCS) is
also examined. Unlike the bounded conduction problem, the HCS has periodic
conditions on all six faces of the cubic domain. Thus, the boundaries do not provide
an energy source, and the system cools with time. The resulting percentage error
in the modified dissipation rate (γ ∗ = γ /T 3/2) between the MD simulations and the
theories of Jenkins (1998) and Garzó & Dufty (1999) is presented in figure 7 as
a function of e. Profiles are shown for both ν̄ = 0.1 and 0.3. As expected (though
contrary to figure 6), the Garzó & Dufty (1999) theory displays a significantly
smaller error (this error may be due to inaccuracies associated with g0) than that
of Jenkins (1998) across the range of e and ν̄ examined. Two additional observations
are noteworthy. First, in both figures 6 and 7, the Jenkins (1998) predictions are
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higher than those of Garzó & Dufty (1999). Secondly, for the HCS (figure 7), the
theory for Garzó & Dufty (1999) overpredicts the MD values, whereas the opposite
is true for the bounded conduction problem (figure 6). Together, these observations
imply a shift downward of predictions from both theories relative to MD values
when switching from the HCS to the bounded conduction system.

To summarize the findings portrayed in figures 6 and 7, the HCS comparisons of
dissipation rate are more consistent with the expectations for each theory than those
of the bounded conduction problem. Namely, for the HCS, less error is obtained with
the Garzó & Dufty (1999) predictions over the range of e examined since its derivation
does not impose any restrictions on the dissipation level. One possible reason for the
apparent inconsistency between the HCS and bounded conduction problem is the
potential presence of clusters (transients in local particle concentration) in either
system, as have been observed in MD simulations of the HCS (Goldhirsch & Zanetti
1993), simple shear flows (Hopkins & Louge 1991; Tan & Goldhirsch 1997; Liss &
Glasser 2001; Lasinski, Curtis & Pekny 2004), and vibro-fluidized beds (Sunthar &
Kumaran 2001). For the HCS system, the length scale required in order to preclude
the clustering instability, as predicted by Brey et al. (2006), was used as a guide for
the system size. Haff’s law (Brilliantov & Pöschel 2004) was used as a further check;
if Haff’s law was violated, data collection was forced to cease and the simulation
was halted. For the case of bounded conduction, the analysis of Galvin et al. (2005)
indicates that clusters are not present over the range of parameters examined. Thus,
the presence of clusters in both systems is intentionally avoided.

The remaining key difference between the HCS and the bounded conduction is
related to the spatial gradients in the hydrodynamic variables. By definition, the
(non-clustering) HCS is homogeneous and thus has zero spatial gradients throughout
the domain, while the bounded conduction problem displays gradients in each of
the hydrodynamic variables (figure 2) and constitutive quantities (figure 3). For this
reason, the HCS provides an ideal system with which to compare Navier–Stokes-order
dissipation rates,† which is consistent with the improved performance of the Garzó
& Dufty (1999) theory over that of Jenkins (1998) for this system (figure 7). Thus,
a possible explanation for the reversal of the relative performance of the two
theories in the bounded conduction problem is the presence of higher-order (beyond
Navier–Stokes-order) gradients which are not negligible. To test this idea, a third set
of predictions is included in figure 6. In particular, the Burnett-order (second-order
in gradients) corrections of Sela & Goldhirsch (1998) are added to the Navier–Stokes
(first-order in gradients) predictions of Garzó & Dufty (1999). Two restrictions on the
Sela & Goldhirsch (1998) theory are noteworthy. First, the theory was developed for
flows in the nearly elastic limit. Thus, the qualitative nature of the correction should
be examined more than the quantitative, particularly at higher dissipation levels.
Secondly, the Sela & Goldhirsch (1998) theory is restricted to the dilute limit, unlike
the theory of Garzó & Dufty (1999), which is why a combination of these theories is
used.‡ (For example, the predicted collisional contribution to the pressure is ∼4% of
the total pressure for a solids fraction of only 0.01; this relative contribution increases

† In addition to γ , a term proportional to ∇ · U also contributes to the first (Navier–Stokes)-
order expression for the dissipation rate of Garzó & Dufty (1999). However, this term is zero for
both the HCS and the bounded conduction problem and thus only the zeroth-order contribution,
or γ , is relevant in this work.

‡ A cleaner approach is to instead run simulations in the dilute limit, and then compare with
the dilute-limit theory. Such simulations, however, become computationally prohibitive in order to
avoid a system composed entirely of a Knudsen layer. Specifically, since L/λ = 6ν L/d , L/d must
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Figure 8. MD profiles and theoretical predictions of the stress components for two
different inelasticities (a) e =0.99 and (b) e = 0.8. MD simulations for xx -component of
stress (circles), yy-component (squares), and zz -component (diamonds); Garzó & Dufty
with Sela & Goldhirsch corrections of yy-component of stress (thin dashed line) and
xx-component (thick dotted line). Vertical lines are as in figure 2. Relevant parameters are
ν̄ = 0.05, TH /TC = 1, L/d = 35.

with ν̄.) For the case of e = 0.99 (figure 6a), the Burnett-order corrections (i.e. the
difference between the Garzó & Dufty 1999 predictions and the Garzó & Dufty
1999/Sela & Goldhirsch 1998) are on the order of the MD accuracy (figure 4). For
e = 0.8, however, the Burnett-order corrections push the predictions of the Garzó &
Dufty (1999) theory in the correct direction. Specifically, the error across the bulk
interior (0.3 < x/Lx < 0.7) is roughly constant at −5%, whereas without the Burnett-
order corrections the error reaches −10% at the boundaries of the bulk interior. This
difference in the impact of Burnett-order terms at the two restitution coefficients can
be explained in terms of the spatial gradients. In particular, at the limit of e = 1,
all spatial gradients are equal to zero for the system under consideration. As the
dissipation level increases, however, the magnitude of both first- and second-order
gradients increases (figures not shown). Thus, Burnett-order effects are expected to
become more important at lower e. Correspondingly, the reduction of error observed
with the inclusion of Burnett-order corrections (figure 6b) is consistent with the
presence of non-negligible higher-order effects in this system. Note that the identical
Burnett-order correction could also be added to the Jenkins (1998) theory (since MD
values are used as inputs to the correction), which would increase the magnitude of the
resulting error. This increased error is not inconsistent with the previous conclusion
on the role of Burnett-order effects, however. In particular, since the Jenkins (1998)
theory is based on a nearly elastic assumption, the errors associated with higher
inelasticities and Burnett-order effects cannot easily be decoupled, as is the case for the
Garzó & Dufty (1999) theory which does not involve the nearly elastic assumption.

Further confirmation of the non-negligible role of higher-order effects is available
from figure 8, in which the components of the stress tensor are illustrated for the case

be increased as ν is decreased in order to maintain a (minimum) value of L/λ. Because N ∝ (L/d)3,
the corresponding computational expenses rise drastically.
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Figure 9. The percentage error in pressure between MD simulations and theoretical
predictions for two different inelasticities (a) e = 0.99 and (b) e = 0.8. Jenkins (1998)
predictions (thin solid line); Garzó & Dufty (1999) predictions (thick dotted line). Vertical
lines are as in figure 2. Remaining relevant parameters are ν̄ = 0.05, TH /TC = 1, L/d = 35.

of ν̄ =0.05, TH/TC = 1, and e = 0.99 (figure 8a) and e = 0.8 (figure 8b). Note that the
MD values of σxx are constant across the domain, whereas σyy and σzz display minima
at the centre of the domain. This behaviour is consistent with the momentum balance
for this system. Namely, the x-component reduces to dσxx/dx = 0 (σxx = constant),
whereas the y- and z-components (∂σxy/∂x =0 and ∂σxz/∂x = 0, respectively) provide
no further restrictions on the remaining normal (σyy and σzz) stress components
(Herbst et al. 2004). However, this behaviour is not consistent with Navier–Stokes-
order approximations. Such approximations reduce to dP/dx = 0 for this system,
where P = 1/3 (σxx + σyy + σzz). In particular, the MD results indicate that P is not
constant across the domain, and thus the Navier–Stokes-order approximation is not
upheld. Instead, the presence of anisotropy provides direct evidence of effects that are
at least Burnett order, as was shown by Goldhirsch & Sela (1996). More specifically,
although the boundaries employed here (equations (1)–(3)) impose a slight amount
of anisotropy at the walls (see near-wall values of figures 8a and 8b), such effects
are not expected to penetrate beyond the Knudsen layer since the particles will have
engaged in a sufficient number of collisions before exiting this layer to effectively
erase any boundary-induced anisotropy. This idea is corroborated by the qualitative
shift in the nature of the anisotropy, namely σxx <σyy (= σzz) in the near-wall region,
whereas the opposite is true in the bulk interior. Accordingly, the anisotropy in the
bulk interior is attributed to higher-order gradients involving n and T . As further
evidence of higher-order effects, the Burnett-order corrections of Sela & Goldhirsch
(1998) are seen to push the predictions of the Navier–Stokes-order theory (Garzó &
Dufty 1999) for σxx (i.e. σxx = P ) in the direction of the MD data. (Note that according
to the Sela & Goldhirsch (1998) theory, no Burnett-order corrections exist for σyy

and σzz in this system, so only predictions for σxx and P are included in this plot.)
For the same set of parameters as used for figure 8, figure 9 presents the percentage

error in the pressure obtained by MD and that predicted by the Navier–Stokes-order
theories. For the nearly elastic case of e = 0.99 (figure 9a), the errors of both theories
are less than 0.2%. For e = 0.8 (figure 9b), the error associated with the Jenkins (1998)
theory increases to just over 3% at the domain centre, while the error associated with
the Garzó & Dufty (1999) theory reaches a maximum of 0.3%.
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Figure 10. The percentage error in heat flux between MD simulations and theoretical
predictions for two different inelasticities (a) e = 0.99 and (b) e = 0.8. Jenkins (1998) predictions
(solid line); Garzó & Dufty (1999) predictions both excluding (thin dotted line with diamonds)
and including (thick dotted line) gradient in number density term. Vertical lines are as in figure
2. Remaining relevant parameters are ν = 0.05, TH /TC = 1, L/d = 35.

Comparisons involving the final constitutive quantity, heat flux, are depicted in
figure 10 for the same conditions: ν̄ = 0.05, TH/TC =1, and e = 0.99 (figure 10a)
and e = 0.8 (figure 10b). For the theories of both Jenkins (1998) and Garzó &
Dufty (1999), the magnitude of the error in qx for e = 0.99 is a few per cent in the
domain interior relative to the MD data. At e = 0.8, however, the error associated
with both Navier–Stokes-order theories increases in magnitude to nearly 40%. It
is worth noting that this error is roughly one order of magnitude greater than that
observed with the other constitutive quantities; see figures 6(b) and 9(b) for analogous
comparisons of γ and P , respectively. Moreover, this error becomes even larger at
higher concentrations; a system with ν̄ =0.10 and e = 0.99 results in an error of
5–10% in the bulk of the domain (figure not shown) compared to the relatively few
per cent observed in figure 10(a). Although Burnett corrections were shown to provide
an improvement for γ and P (figures 6b and 8b), no Burnett-order correction exists
for qx owing to symmetry constraints in both dilute (Sela & Goldhirsch 1998) and
dense (I. Goldhirsch, personal communication 2006) systems. Thus, the large errors
in heat flux appear to stem from effects which are super-Burnett-order (third-order
in gradients) or larger, as symmetry arguments do not rule out the possibility of
super-Burnett contributions to the heat flux (I. Goldhirsch, personal communication
2006). Finally, also shown in figure 10 are the Garzó & Dufty (1999) predictions for
heat flux with only the ∇T driving force (line with diamonds); in other words, the
∇n term in the heat flux equation is omitted (see table 1). These results indicate that
the main difference in the predictions obtained using the Jenkins (1998) and Garzó
& Dufty (1999) theories can be traced to the ∇n term, though these differences are
fairly small relative to the overall error in heat flux.

Further support for the non-negligible role of higher-order effects in this system
can be gleaned from the work of Santos, Garzó & Dufty (2004), who developed
an expression for the heat flux which includes non-Newtonian (higher-order) effects.
Their expression is based on a model kinetic equation of the Boltzmann equation
and targeted specifically at the bounded conduction problem, though their results are
limited to the quasi-elastic and dilute limits. Since, as discussed above, the collisional
contributions to the constitutive quantities are not negligible for the range of particle
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concentrations explored in this work, a direct comparison between the Santos et al.
(2004) predictions for heat flux and the MD data is not included here. Nonetheless,
it is worth noting that Santos et al. (2004) predicts a heat flux which is larger in
magnitude than its Navier–Stokes-order counterpart. In the context of figure 10, an
increase in heat flux would shift the profiles upward, which is required for a reduction
in error. (Recall that the percentage error is defined as 100 × (theory − MD)/MD, in
which a negative value implies that the theory is underpredicting the magnitude of
the heat flux.)

Collectively, the results obtained here highlight the unique characteristics of
dissipative (inelastic) systems relative to their molecular counterparts. First, for hard-
sphere molecular gases, the Dufour contribution to the heat flux is non-existent. Its
origin in granular systems stems directly from their dissipative nature. Specifically,
consider a system which is initially uniform in temperature and non-uniform in
concentration. A corresponding non-uniformity in collision frequency will lead to an
uneven distribution of energy loss across the domain, thereby giving rise to a gradient
in temperature. The same is not true of molecular systems, since their collisions do not
result in energy loss. Secondly, for a bounded conduction problem in which the two
bounding walls are of different temperature, a Burnett-order treatment has been found
to work well for molecular systems with an effective Kn up to 0.1 (Mackowski et al.
1999). Furthermore, previous studies for molecular gases have shown that deviations
from Fourier’s law are quite small even in the presence of large thermal gradients
(Ciccotti & Tenebaum 1980; Mareschal et al. 1987; Clause & Mareschal 1988;
Santos & Garzó 1995). Thus, the importance of super-Burnett-order contributions
(or larger) to the heat flux appears to be a distinctive feature of dissipative systems,
at least for the system considered in this work.

5. Concluding remarks
A comparison of the constitutive quantities (γ , σ and q) extracted from MD

simulations and those predicted by Navier–Stokes-order theories indicate the non-
negligible role of higher-order effects in the bounded conduction problem studied here.
This conclusion is supported by three observations: (i) the relative performance of two
Navier–Stokes-order theories for γ at various e is inconsistent with expectations in
the bounded conduction problem but consistent with expectations in a gradient-free
system (HCS), (ii) an anisotropy in stress components is observed in the bulk region,
and (iii) corrections from a Burnett-order theory for dilute, nearly elastic systems
provide qualitative improvement to the Navier–Stokes-order predictions. Several
further observations related to the heat flux are noteworthy. First, the error of the
Navier–Stokes-order predictions for qx are about one order of magnitude greater than
those of γ and P . Secondly, because no Burnett-order corrections exist for qx (unlike γ

and σ ), the higher-order effects must be at least of super-Burnett (third) order. Finally,
these higher-order contributions to the heat flux appear to play a more important role
than the Dufour contribution (the Navier–Stokes order contribution arising from ∇n).

It is worth pointing out that other causes for the observed mismatch between MD
simulations and Navier–Stokes-order predictions are possible, though not likely. First,
the theories considered in this work (Jenkins 1998; Garzó & Dufty 1999) employ the
lowest non-zero order of a Sonine polynomial expansion for evaluation of collision
integrals. Several previous investigations have indicated that additional terms in the
expansion may become important only at higher dissipation levels, namely e ∼ <0.7
(Garzó & Montanero 2002; Brey & Ruiz-Montero 2004; Brey et al. 2005), and such
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contributions have been confirmed by (Montanero, Santos & Garzó 2007; Noskowicz
et al. 2007) using two different approaches to derive transport coefficients that go
beyond the lowest Sonine truncation. Because the systems forming the basis of the
current work are characterized by e =0.8 and 0.99 (these systems are not highly
dissipative), however, additional terms in the Sonine expansion are not expected to
play a role. Secondly, the Enksog equation itself is known to suffer inaccuracies at
high particle concentrations owing to the presence of ring collisions, though such
collisions are not expected to play a role at the moderate concentrations considered
here (ν < 0.1). A third possibility is the effects induced by the boundaries beyond the
nominal Knudsen layers (as are demarcated by the vertical lines in figures 2 to 6 and
8 to 11). For the systems considered in this work, such effects are not likely since the
errors observed in the bulk are often the largest at the centre of the domain (furthest
from the boundaries). In addition, boundary effects are expected to be small in the
bulk, whereas the errors in the heat flux are quite large (up to 40% in magnitude).
A fourth possibility is the presence of clusters. As detailed in § 4, however, careful
checks were made to ensure that the systems from which the MD data were collected
were free of clusters. Finally, it is possible that we have to consider the non-local
rheological or liquid-like effects (see, for example, MiDi 2004; Silbert et al. 2007).
However, such effects are generally associated with dense systems near the transition
to solid-like behaviour and as such is unlikely to be a contributing factor in the
failings of the Navier–Stokes-order description revealed in this work.

The results obtained in this work give rise to two further questions. First, do higher-
order effects contribute in a non-negligible way to the bulk interior of other systems?
Higher-order effects also have been noted in simple shear flow (Santos et al. 2004),
though other systems have not been probed in a similar manner. If higher-order
effects are found to be important beyond these two systems, additional theoretical
work is required in order to predict such flows. Specifically, the majority of theories
developed for granular systems to date are of Navier–Stokes order; only a relatively
small number of theories have been developed which incorporate higher-order effects
(Kumaran 1997, 2005; Cordero & Risso 1998; Sela & Goldhirsch 1998; Risso &
Cordero 2002; Santos et al. 2004), and these are restricted to a limited class of
systems (e.g. dilute sheared flow).

The second question stemming from this work is: can the importance of higher-
order effects in a given granular system be assessed a priori? The answer is important
not only for those interested in predicting the hydrodynamic profiles occurring in
an experimental or simulated system, but also for those interested in extracting
constitutive quantities from MD simulations. As mentioned in § 1, such extraction
provides a test bed for hydrodynamic descriptions, but it is only reliable if the
correct form of the constitutive relation is known beforehand. For example, the HCS
is an ideal test bed for Navier–Stokes-order γ since it is a zero-gradient system,
whereas systems that can be used for the extraction of Navier–Stokes-order transport
coefficients (k, µ, etc.) are not as obvious since non-zero gradients are required
to obtain these quantities. If higher-order effects are present in such systems, they
cannot easily be separated out as is required for a direct determination of k, µ

etc. Furthermore, the importance of accurate extraction of transport coefficients goes
beyond its use as a testing ground for existing theories. For example, practical systems
include differences in particle shape; a kinetic-theory-based approach for such systems
appears intractable at present. Thus, the extraction of transport coefficients from MD
provides a much needed alternative for complex systems, assuming that the issues
related to higher-order effects can be worked out.
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Finally, a few comments on normal stress differences are warranted. In general,
such anisotropy can be induced by the boundaries or can arise from Burnett-order
effects (Goldhirsch & Sela 1996). An example of the former is a vibro-fluidized bed
in which the largest random velocity component at the vibrating base occurs in the
direction of vibration (Wildman, Huntley & Parker 2001). Examples of the latter
include a simple shear system (Walton & Braun 1986; Jenkins & Richman 1988;
Goldhirsch & Sela 1996; Alam & Luding 2003) and the bounded conduction system
considered here. In both of the latter systems, the anisotropy can be described by
Burnett-order gradients in the flow-field variables, namely those associated with the
velocity gradient for the case of simple shear flow (in which ∇n = ∇T = 0) and those
associated with temperature and concentration gradients for the bounded conduction
system (in which ∇V = 0, since the average velocity V is zero). In practice, anisotropy
may result from a mixture of gradient-induced anisotropy and boundary-induced
anisotropy, as is the case for the vibro-fludized bed. However, the normal stress
differences arising from particle–wall interactions are expected to attenuate once the
particles have engaged in enough particle–particle collisions. Specifically, on length
scales greater than the thickness of the Knudsen layer (Galvin et al. 2007), anisotropy
driven by the boundary is effectively eliminated, and any remaining anisotropy in
the bulk region is driven by gradients of Burnett order or greater. As mentioned
above, the occurrence of such anistropic effects in the bulk region suggests the need
for higher-order theories. Similarly, the presence of such effects in the boundary
region calls for improved ‘apparent’ boundary conditions, analogous to those use to
described rarefied gases.
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